130 research outputs found

    Accumulation of protein-bound epidermal glucosylceramides in β-glucocerebrosidase deficient type 2 Gaucher mice

    Get PDF
    AbstractThe epidermal permeability barrier for water is essentially maintained by extracellular lipid membranes within the interstices of the stratum corneum. Ceramides, the main components of these membranes, derive in large part from hydrolysis of glucosylceramides mediated by the lysosomal enzyme β-glucocerebrosidase. As analyzed in this work, the β-glucocerebrosidase deficiency in type 2 Gaucher mice (RecNci I) resulted in an accumulation of all epidermal glucosylceramide species accompanied with a decrease of the related ceramides. However, the levels of one ceramide subtype, which possesses an α-hydroxypalmitic acid, was not altered in RecNci I mice suggesting that the β-glucocerebrosidase pathway is not required for targeting of this lipid to interstices of the stratum corneum. Most importantly, ω-hydroxylated glucosylceramides which are protein-bound to the epidermal cornified cell envelope of the transgenic mice accumulated up to 35-fold whereas levels of related protein-bound ceramides and fatty acids were decreased to 10% of normal control. These data support the hypothesis that in wild-type epidermis ω-hydroxylated glucosylceramides are first transferred enzymatically from their linoleic esters to proteins of the epidermal cornified cell envelope and then catabolized to protein-bound ceramides and fatty acids, thus contributing at least in part to the formation of the lipid-bound envelope

    Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit

    Get PDF
    Sphingosine-1-phosphate receptor 1 (S1P1) was recently shown to be required for lymphocyte egress from lymphoid organs. Here we have examined the relationship between S1P1 abundance on the cell and egress efficiency. Using an integrin neutralization approach to separate the processes of entry and exit, we show that pertussis toxin treatment reduces lymphocyte egress from lymph nodes. Retrovirally mediated S1P1 overexpression is sufficient to reduce B cell accumulation in the splenic white pulp and to promote egress of activated T cells from lymph nodes, whereas S1P1+/−cells have reduced lymph node exit efficiency. Furthermore, lymphocyte S1P1 is down-regulated in the blood, up-regulated in lymphoid organs, and down-regulated again in the lymph. We propose that cyclical ligand-induced modulation of S1P1 on circulating lymphocytes contributes to establishing their lymphoid organ transit time

    The effect of endothelial cell overexpression of plasminogen activator inhibitor-1 on smooth muscle cell migration

    Get PDF
    AbstractIntroduction: Plasminogen activator inhibitor-1 (PAI-1), a known inhibitor of plasminogen activators, may regulate smooth muscle cell migration (SMC) through alteration in matrix metalloproteinase (MMP) activity. Methods: To study the effect of endothelial cell (EC) PAI-1 overexpression on SMC migration, RT-PCR was used to clone the full length PAI-1 gene, which was ligated into the pCMV/myc/ER expression vector. With electroporation, bovine aortic ECs were transfected with either the PAI-1 construct or the empty vector as control. EC PAI-1 overexpression was shown with a specific PAI-1 activity assay and enzyme-linked immunosorbent assay. The effect of EC PAI-1 overexpression on SMC migration was measured with a modified Boyden-chamber assay. SMC MMP expression was measured with zymography. Results: Selected clones (EC9, EC21) had a three-fold to five-fold increase in PAI-1 activity compared with untransfected EC and empty vector EC (ECC). Similarly, enzyme-linked immunosorbent assay results showed a 3.5-fold to 5.5-fold increase in PAI-1 levels in EC9 and EC21 versus ECC. Untransfected EC and ECC had similar effects on SMC migratory patterns. Migration of SMC exposed to PAI-1 overexpressing EC was inhibited by 35% to 57% compared with ECC. This inhibitory effect was reversed with addition of exogenous urokinase-type plasminogen activator (uPA). Zymography showed downregulation of MMP-2 and MMP-9 in SMCs exposed to PAI-1 overexpressing EC. Conclusion: PAI-1 overexpression with transfected EC inhibits SMC migration. This effect may be mediated through decreased SMC MMP activity. (J Vasc Surg 2002;36:164-71.

    B Cell-Specific S1PR1 Deficiency Blocks Prion Dissemination between Secondary Lymphoid Organs

    Get PDF
    Many prion diseases are peripherally acquired (eg. orally or via lesions to skin or mucous membranes). After peripheral exposure prions replicate first upon follicular dendritic cells (FDC) in the draining lymphoid tissue before infecting the brain. However, after replication upon FDC within the draining lymphoid tissue, prions are subsequently propagated to most non-draining secondary lymphoid organs (SLO) including the spleen by a previously underdetermined mechanism. The germinal centres in which FDC are situated produce a population of B cells which can recirculate between SLO. We therefore reasoned that B cells were ideal candidates by which prion dissemination between SLO may occur. Sphingosine 1-phosphate receptor 1 (S1PR1) stimulation controls the egress of T and B cells from SLO. S1PR1 signalling-blockade sequesters lymphocytes within SLO resulting in lymphopenia in the blood and lymph. We show that in mice treated with the S1PR modulator FTY720, or with S1PR1-deficiency restricted to B cells, the dissemination of prions from the draining lymph node to non-draining SLO is blocked. These data suggest that B cells interacting with and acquiring surface proteins from FDC, and recirculating between SLO via the blood and lymph, mediate the initial propagation of prions from the draining lymphoid tissue to peripheral tissues

    The Sphingosine Kinase-Sphingosine-1-Phosphate Axis Is a Determinant of Mast Cell Function and Anaphylaxis

    Get PDF
    SummarySphingosine-1-phosphate, a key mediator in immune cell trafficking, is elevated in the lungs of asthmatic patients and regulates pulmonary epithelium permeability. Stimulation of mast cells by allergens induces two mammalian sphingosine kinases (Sphk1 and Sphk2) to produce sphingosine-1-phosphate (S1P). Little is known about the individual role of these kinases in regulating immune cell function. Here we show that in mast cells, Sphk2 is required for production of S1P, for calcium influx, for activation of protein kinase C, and for cytokine production and degranulation. However, susceptibility to in vivo anaphylaxis is determined both by S1P within the mast cell compartment and by circulating S1P generated by Sphk1 predominantly from a non-mast cell source(s). Thus, sphingosine kinases are determinants of mast cell responsiveness, demonstrating a previously unrecognized relationship with anaphylaxis

    Plasma cell S1P1 expression determines secondary lymphoid organ retention versus bone marrow tropism

    Get PDF
    After induction in secondary lymphoid organs, a subset of antibody-secreting cells (ASCs) homes to the bone marrow (BM) and contributes to long-term antibody production. The factors determining secondary lymphoid organ residence versus BM tropism have been unclear. Here we demonstrate that in mice treated with FTY720 or that lack sphingosine-1-phosphate (S1P) receptor-1 (S1P1) in B cells, IgG ASCs are induced and localize normally in secondary lymphoid organs but they are reduced in numbers in blood and BM. Many IgG ASCs home to BM on day 3 of the secondary response and day 3 splenic ASCs exhibit S1P responsiveness, whereas the cells remaining at day 5 are unable to respond. S1P1 mRNA abundance is higher in ASCs isolated from blood compared to spleen, whereas CXCR4 expression is lower. Blood ASCs also express higher amounts of Kruppel-like factor (KLF)2, a regulator of S1P1 gene expression. These findings establish an essential role for S1P1 in IgG plasma cell homing and they suggest that differential regulation of S1P1 expression in differentiating plasma cells may determine whether they remain in secondary lymphoid organs or home to BM

    Transactivation of Sphingosine-1–Phosphate Receptors by FcɛRI Triggering Is Required for Normal Mast Cell Degranulation and Chemotaxis

    Get PDF
    Mast cells secrete various substances that initiate and perpetuate allergic responses. Cross-linking of the high-affinity receptor for IgE (FcɛRI) in RBL-2H3 and bone marrow–derived mast cells activates sphingosine kinase (SphK), which leads to generation and secretion of the potent sphingolipid mediator, sphingosine-1–phosphate (S1P). In turn, S1P activates its receptors S1P1 and S1P2 that are present in mast cells. Moreover, inhibition of SphK blocks FcɛRI-mediated internalization of these receptors and markedly reduces degranulation and chemotaxis. Although transactivation of S1P1 and Gi signaling are important for cytoskeletal rearrangements and migration of mast cells toward antigen, they are dispensable for FcɛRI-triggered degranulation. However, S1P2, whose expression is up-regulated by FcɛRI cross-linking, was required for degranulation and inhibited migration toward antigen. Together, our results suggest that activation of SphKs and consequently S1PRs by FcɛRI triggering plays a crucial role in mast cell functions and might be involved in the movement of mast cells to sites of inflammation

    Human GLB1 knockout cerebral organoids: A model system for testing AAV9-mediated GLB1 gene therapy for reducing GM1 ganglioside storage in GM1 gangliosidosis

    Get PDF
    GM1 gangliosidosis is an autosomal recessive neurodegenerative disorder caused by the deficiency of lysosomal gangliosidebeta-galactosidase (beta-gal) and resulting in accumulation of GM1 ganglioside. The disease spectrum ranges from infantile to late onset and is uniformly fatal, with no effective therapy currently available. Although animal models have been useful for understanding disease pathogenesis and exploring therapeutic targets, no relevant human central nervous system (CNS) model system has been available to study its early pathogenic events or test therapies. To develop a model of human GM1 gangliosidosis in the CNS, we employed CRISPR/Cas9 genome editing to target GLB1 exons 2 and 6, common sites for mutations in patients, to create isogenic induced pluripotent stem (iPS) cell lines with lysosomal beta-gal deficiency. We screened for clones with \u3c 5% of parental cell line beta-gal enzyme activity and confirmed GLB1 knockout clones using DNA sequencing. We then generated GLB1 knockout cerebral organoids from one of these GLB1 knockout iPS cell clones. Analysis of GLB1 knockout organoids in culture revealed progressive accumulation of GM1 ganglioside. GLB1 knockout organoids microinjected with AAV9-GLB1 vector showed a significant increase in beta-gal activity and a significant reduction in GM1 ganglioside content compared with AAV9-GFP-injected organoids, demonstrating the efficacy of an AAV9 gene therapy-based approach in GM1 gangliosidosis. This proof-of-concept in a human cerebral organoid model completes the pre-clinical studies to advance to clinical trials using the AAV9-GLB1 vector

    Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation

    Get PDF
    Sandhoff disease, one of the GM2 gangliosidoses, is a lysosomal storage disorder characterized by the absence of beta-hexosaminidase A and B activity and the concomitant lysosomal accumulation of its substrate, GM2 ganglioside. It features catastrophic neurodegeneration and death in early childhood. How the lysosomal accumulation of ganglioside might affect the early development of the nervous system is not understood. Recently, cerebral organoids derived from induced pluripotent stem (iPS) cells have illuminated early developmental events altered by disease processes. To develop an early neurodevelopmental model of Sandhoff disease, we first generated iPS cells from the fibroblasts of an infantile Sandhoff disease patient, then corrected one of the mutant HEXB alleles in those iPS cells using CRISPR/Cas9 genome-editing technology, thereby creating isogenic controls. Next, we used the parental Sandhoff disease iPS cells and isogenic HEXB-corrected iPS cell clones to generate cerebral organoids that modeled the first trimester of neurodevelopment. The Sandhoff disease organoids, but not the HEXB-corrected organoids, accumulated GM2 ganglioside and exhibited increased size and cellular proliferation compared with the HEXB-corrected organoids. Whole-transcriptome analysis demonstrated that development was impaired in the Sandhoff disease organoids, suggesting that alterations in neuronal differentiation may occur during early development in the GM2 gangliosidoses
    • …
    corecore